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Synopsis

A statistical analysis of dilute solution viscosity data for a wide range of polyethylene
and polypropylene samples in Decalin at 135°C has shown that the Martin equation

log (n.p/¢) = log [l + klnlc
fits the experimental data better than the Huggins equation

nep/C = [n] 4+ k'[n]%¢

at higher values of [n]c. A grand average k of 0.139 is applicable to both polymers.
Based upon this, tables have been calculated permitting the ready determination of [4]
from a single relative viscosity measurement at a known concentration. The Martin
equation has been put into a universal form, permitting [»] to be calculated from a mea-
sured 7,, if £ and ¢ are known. Graphs relating 7,, to [4] are included for use of the Mar-
tin equation over wide ranges of both k and ¢. It was found that the Solomon and Ciuta
equation

["I]c = (271817 —2In "Irn‘zl)l/2

fits the experimental polyethylene and polypropylene data, and the reasons for this are
discussed.

INTRODUCTION

The intrinsie viseosity, [g], is probably the most frequently measured
property of high polymers. It is relatively easy to determine, provides an
estimate of molecular weight, and is an essential parameter in any detailed
polymer characterization.! It is generally determined by measuring the
relative viscosities, 5,.;, of a series of solutions of differing concentration.
From these data 5,/ is calculated, where 5, is the specific viscosity and ¢
is the polymer concentration (in g/dl). The %,,/c values are then ex-
trapolated to zero coneentration, using an appropriate relationship, to ob-
tain [n].

1t is apparent that considerable time and effort would be saved if, instead
of determining #,.; for a series of solutions, a single determination at a known
concentration might be used to give {7] directly. Some years ago, Martin?
proposed a method for the determination of the intrinsie viscosity of cellu-
lose in cuprammonium or 0.5M cupriethylenediamine based upon a single
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viscosity measurement. Recently a number of workers have proposed and
discussed various equations for obtaining [»] from a single determination of
%re.  These include Solomon and Ciuta,? Palit and Kar,* and Deb and Chat-
terjee.® The current interest in one-point [4] methods has prompted us to
describe the one-point method for polyethylene and polypropylene which
has been in use in our laboratories for the past five years, together with the
experimental data and statistical analyses upon which it is based.

EXPERIMENTAL

Measurements were made on a wide variety of commercial and experi-
mental samples of polyethylene and polypropylene. The ratio ./,
was determined by gel permeation chromatography. ASTM Method
1238-62T was used to measure 7, at 190°C. The samples are deseribed in
Tables I and II. ‘

Decalin (decahydronaphthalene) was du Pont technical grade. In cer-
tain cases, the Decalin was percolated through silica gel and then distilled.s
Substantially the same results were obtained using the Decalin as received
and after purification. Two grams of phenyl-g-naphthylamine per kilo-
gram of Deecalin was added as an antioxidant.

Dilution Ubbelohde viscometers” having flow times of approximately 100
sec for water at 25°C were used. These were calibrated with water and
standard oils from the National Bureau of Standards according to ASTM
Method D445-53T. The kinetic energy correction was applied in all cases.
Measurements were made in a constant temperature oil bath at 135 =
0.1°C.

Decalin was found to have a density of 0.883 g/ml at 25°C and 0.801 g/ml
at 135°C. Thus, for practical routine use (error 0.5%,),0.90 ml of Decalin
at 25°C is equivalent to 1.00 ml at 135°C. Solutions of the polymers were
prepared on a weight basis, and the weight of the solution introduced into
the viscometer was determined. The volume of the solution at 135°C and
its concentration in g/dl at this temperature were calculated using the
densities given above. Dilutions were made by pipetting Decalin into the
viscometer and again correcting the added volume to the operating tem-
perature. At least four dilutions were made in each [] determination.

TREATMENT OF DATA

Viscosity-Concentration Relationships

In order to obtain the [] of a polymer from a series of viscosity measure-
ments, it is necessary to assume some functional relationship between rela-
tive viscosity and coneentration. Numerous relationships have been pro-
posed, and these have been thoroughly reviewed by Rutgers.® Of these
many relationships, the Huggins equation

77311/6 = [77] + k’[ﬂ]zc (1)
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and the Martin equation

log (3sp/¢) = log [n] + klnle 2

have proved to be among the most useful. The experimental data were
treated in terms of each of these equations.

Effect of Shear Rate

It has been found that solutions of polyethylene and polypropylene in
Decalin exhibit non-Newtonian behavior, even at the low concentrations
normally used in the determination of []. A study of the effect of shear rate
on 7, was carried out in this laboratory,? using a variable shear Wagner-
Russell capillary viscometer.’? The effect of shear rate for both polymers
could be described by the following empirical equation:

Nspy=0 = Nsp (14 1.5X10"%9.v) @)

where 1,,4 -0 is the specific viscosity at zero shear rate and 7,, is the specific
viscosity at the shear rate, v.

Almost all theories of the effect of shear rate on dilute solution viscosity
predict a second-power dependence on y for the initial non-Newtonian por-
tion of this #,,—y curve.!* Cases have been reported, however, where a
linear shear rate dependence describes the experimental data.!!:}? Inas-
much as our experimental data follow eq. (3), it is clear that any shear rate
correction disappears as 7., (or the concentration) approaches zero. Thus,
the extrapolation to zero concentration, which is necessary in using either
the Martin or Huggins equations, results in the elimination of any necessity
for a shear rate correction.

Statistical Treatment of Data

To obtain an objective estimate of [7] and the slope constants &’ and k,
the experimental data were fitted to the Huggins and Martin equations by
the method of least squares. Before this was done, it was necessary to
decide whether or not to weight the experimental points and, if so, in what
way. As the concentration in a given set of measurements becomes lower,
the precision in 5, becomes less, inasmuch as the viscosity of the solution
approaches that of the solvent and 5,, becomes the relatively small differ-
ence between two large numbers. Based upon this consideration, each
point was weighted by a factor equal to the difference between the flow
times of the solution and solvent, both corrected for kinetic energy.

Least-square values of [n] and the slope constants for both the Martin
and Huggins equations are given in Tables I and II.

Estimates of the coefficients of variation (e.g., 100 ¢{5]/[3]) are included
for these quantities, ¢[n] being the estimate of the standard deviation in
[n].

Consideration of these coeflicients of variation for the more extensive
polyethylene [n] results indicate that Martin’s equation fits the experi-
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mental data better than Huggins’s. The situation appears to be reversed
in the polypropylene case. However, these polymer samples were fewer
in number and predominantly in the lower [y] range. Here, both equations
fit the experimental points quite well, and it is difficult to make a choice.
Hence, the Martin equation, which shows a better fit at higher [7] values,
was selected as the basis of the one-point [7 ] method.

This choice is confirmed in a more subjective manner when plots of the
experimental data for a very high [n] polymer, sample B, are:made using
both relationships. Admittedly, the [5] of this sample is unusually high,
but it illustrates the better fit of the Martin equation. This is shown in
Figure 1. Tt should be noted that the observed slope constant & is 0.143, in

20 1 | i 1 L 1
0,02 0.04 0.06 0.08 0.10
clg /di)

Fig. 1. Martin plot for polyethylene, sample B: [] by least squares, 26.9; [»] from high-
est point using £ = 0.139, 27.3.

close agreement with 0.139, the grand average of both polymers. In con-
trast, there is marked curvature in the deviation of the experimental points
from the least-squares Huggins line, shown in Figure 2. In addition, the
slope constant &’ for this line is approximately twice as high as any other in
either series of polymers studied.

Consideration of Tables I and II makes it quite clear that treatment of
the data by the Huggins equation tends to yield lower values than those ob-
tained using the Martin equation. This, in itself, is not a matter of great
consequence. The important point is that, by both objective statistical
analysis and the more subjective plotting of points, the Martin equation
appears to describe experimental data better over a wider range of [] and c.

Interestingly, Sakai'® has analyzed extrapolation procedures for [7] and
has proposed using averages from Martin and Huggins plots for measure-
ments in good solvents. This procedure, however, does not lend itself to a
one-point ] method.
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Fig. 2. Huggins plot for polyethylene, sample B: [4] from least-squares line, 21.3.

At first glance, the spread of k values between samples and even between
duplicate determinations on the same sample seems to be so large that the
use of eq. (2) as the basis for a one-point [5] method appears unpromising.
1t has long been known, however, that to achieve very good precision and
accuracy in the experimental determination of the slope constant requires
extraordinarily precise measurement techniques. Extensive studies' have
shown, however, that for a given polymer—solvent system at a fixed tem-
perature, k is a constant. Any appreciable variation in k indicates that the
polymer is not the “given polymer” and that some chemical or structural
difference is present. These differences may be rather subtle; in the case of
cellulose derivatives, for example, variations in the degree and uniformity of
substitution or the presence of traces of bound ions may be responsible.
In cases such as this, where the effect of association at finite concentration
can be reduced by extrapolation to zero concentration, we have found it
preferable to use a solvent that minimizes association and allows the use of
the one-point method.

Some years ago, however, Davis'® carried out a very thorough analysis
of capillary viscometry and of the determination of {4] by a one-point
method, based on the theory of the propagation of errors. Based upon
reasonable assumptions, he concluded, that, if k is known to only +409%, [4]
can be determined to £29, if the concentration at which the viscosity is
measured is such that [y]e <0.1. This is too low, in general, for a standard-
ized method of wide applicability, but it does indieate that reasonable preei-
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TABLE III
Polyethylene—One-Point Intrinsic Viscosity»
[9] from exptl. point nearest [#] from exptl. point nearest
¢ = 0.100 ¢ = 0.500
. [4} from :
least k= k= = k= k= k=
Sample  squares 0.146 0.132 0.139 0.146 0.132 0.139
A 19.8 19.0 19.8 19.4 — — —
B 26.9 26.7 28.0 27.3 — — —
C 2.19 2.23 2.24 2.23 — — —
2.34 2.33 2.34 2.34 2.30 2.37 2.34
2.16 2.20 2.22 2.21 2.24 2.30 2.27
D 4.06 4.21 4.27 4.24 — —_ —_
4.48 4.37 4.43 4.40 4.28 4.47 4.38
4.59 4.43 4.49 4.46 4.40 4.60 4.50
E 1.93 1.94 1.95 1.94 1.94 1.99 1.96
1.96 1.95 1.96 1.96 1.93 1.98 1.96
F 2.33 2.34 2.35 2.35 _ — —_
G 2.35 2.34 2.37 2.36 2.35 2.42 2.38
H 2.27 2.30 2.32 2.31 2.31 2.38 2.35
2.32 2.32 2.33 2.32 2.29 2.35 2.32
2.36 2.36 2.38 2.37 2.28 2.35 2.32
I 1.94 1.92 1.94 1.93 1.99 2.04 2.01
1.98 1.99 2.01 2.00 1.96 2.00 1.98
2.15 2.15 2.17 2.16 2.07 2.12 2.09
J 1.56 1.56 1.57 1.57 1.59 1.63 1.61
K 2.06 2.26 2.28 2.27 1.95 2.00 1.97
1.90 1.87 1.89 1.88 1.90 1.94 1.92
1.87 1.87 1.89 1.88 1.86 1.89 1.88
L 2.04 2.06 2.07 2.07 2.14 2.19 2.16
2.00 1.99 2.01 2.00 1.98 2.02 2.00
2.01 2.00 2.02 2.01 2.02 2.06 2.04
M 0.68 0.70 0.70 0.70 0.66 0.66 0.66
0.66 0.66 0.67 0.66 0.65 0.66 0.66
0.75 0.75 0.76 0.76 0.74 0.75 0.75

&« Units, dl/g.

sion in [7] can be achieved with a one-point method, even if there is con-
siderable uncertainty in the value of k.

Examination of the data in Tables I and II does not reveal any correla-
tion between k and the known chemical composition, molecular weight, or
molecular weight distribution of the sample. In a series of [n] measure-
ments for a number of samples of the same type of polymer, using the usual
multipoint method, an apparently wide spread of the slope constant & will
usually be found. This variation in %k will then introduce some, albeit
relatively small, error in the extrapolated [n] values. We believe that the
use of an average k value, established by using a wide range of samples,
together with an experimental 5,,, value determined at a concentration
where good precision can be expected, will yield a more accurate estimate of
[#] than that obtained from a multipoint measurement.
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TABLE IV
Polypropylene—One-Point Intrinsic Viscositys
[n] from exptl. point nearest [#] from exptl. point nearest
c = 0.100 ¢ = 0.500
7] from

least k= k= k= = = k=
Sample squares 0.146 0.132 0.139 0.146 0.132 0.139
N 12.1 12.1 12.5 12.3 — — —
(0} 1.43 1.44 1.45 1.45 1.41 1.44 1.42
P 8.54 8.42 8.60 8.51 — —_
Q 3.08 3.08 3.11 3.09 — — —
3.08 2.98 3.01 3.00 2.95 3.06 3.00

3.29 3.18 3.22 3.20 3.0 3.20 3.14

R 2.32 2.27 2.29 2.28 2.21 2.27 2.24
2.35 2.25 2.28 2.26 2.23 2.28 2.25

2.49 2.39 2.42 2.41 2.36 2.41 2.39

S 1.70 1.69 1.70 1.69 1.68 1.72 1.70
T 2.24 2.27 2.29 2.28 2.28 2.35 2.31
2.34 2.28 2.30 2.29 2.21 2.28 2.25

s Units, dl/g.

The average k for polyethylene is 0.146, while that for polypropylene is
0.132. This difference is considerably smaller than that between and
within samples of the same polymer; hence a grand average value of 0.139
was selected for use.

Tables IIT and IV compare the [] of the various samples calculated from
770 8t the indicated concentrations, using k values of 0.132, 0.139, and 0.146,
with that obtained by the least-squares treatment of at least five experi-
mental points discussed earlier. Differences between [4] for the various
values of k are smaller than variations observed in replicate determinations
by the five-point method. This confirms our earlier conclusions that, for a
given polymer—solvent system, [y] determined from one measurement of
relative viscosity using an average k value obtained from many measure-
ments is, in general, more accurate than [»] determined using the conven-
tional four- or five-point procedure.

Figures 1 and 3 illustrate how well the one-point method fits the experi-
mental data. In Figure 1, the [4] obtained by using the highest point and
the value of 0.139 for k is 27.3, compared with 26.9 from the least-squares
line. Figure 3 illustrates the fact that even when the fit to the points is
seemingly bad and k is unusually far from the average, the value of the one-
point [5] is in acceptable agreement with the five-point method. The
least-squares line gave [n] = 2.33 with k = 0.172 for sample F, while the
one-point method using & = 0.139 gives 2.43.

OUTLINE OF THE [4] METHOD

The sample of polyethylene or polypropylene is accurately weighed into a
volumetrie flask. Based upon this weight, the volume of solution at 135°C
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] l 1
0.1 0.2 0.3
c {9 /dl)

Fig. 3. Martin plot for polyethylene, Sample F: [4] by least squares, 2.33; [»] from
highest point using k¥ = 0.139, 2.43, as shown.

to give the desired polymer concentration (generally 0.1 g/dl) is caleulated.
0.90 times this volume of Decalin at 25°C is added to the volumetric flask
and the sample dissolved by heating, in the usual manner. The flow times
of the solvent and of the solution in a suitable viscometer are determined,
appropriate kinetic energy corrections being applied. The ratio of these
corrected flow times is the relative viscosity, inasmuch as the density of the
solution, at these low concentrations, may be considered to be the same as
that of the solvent. The value of []is then read using linear interpolation
from the appropriate table (Tables V to VIII) for the concentration used.

These tables are based on Martin’s equation, with & = 0.139, which may
be put in the form

Nret = 1+ C[ﬂ]e0'320h]c' (3)

While the most generally useful concentration is 0.1 g/dl, tables are in-
cluded for 0.5 g/dl and 0.05 g/dl. These concentrations should be used for
samples having very low and very high [] values, respectively.

DISCUSSION

The conclusion that the Martin equation, eq. (2), fits the experimental
data better than the Huggins equation, eq. (1), particularly with the higher
[7] samples, is in agreement with our experience. Over many years, we
have found that the Martin equation has very satisfactorily fitted dilute
solution viscosity data for a wide range of polymer-solvent systems. It
is somewhat surprising that it is not more generally used. This is probably
due in part to the fact that the Huggins equation is somewhat easier to
manipulate mathematically.
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It is in order to examine various equations for [5], especially that of
Solomon and Ciuta,? by which [7] may be determined from a single viscosity
measurement without the necessity of establishing the value of a slope con-
stant.

Solomon and Ciuta's equation

[1le = (215 — 2In7,00)"* )
may be derived readily by combining Huggins’s equation
1sp/¢ = [n] + k' [n]*c 1)

and Kraemer’s equation®
Innu/c = [1] — k" [n]* ()

remembering that in the limit as ¢ goes to zero, k' + k" = /..

An equivalent derivation of eq. (4) consists of expanding In 9,.; and com-
bining this with the Huggins equation, dropping terms in the expansion
containing higher powers of [»] than {»]2.¥

Inasmuch as eq. (4) is a consequence of combining the Huggins and
Kraemer equations, it is instructive to consider the implications. Both
equations are limiting expressions which are only strictly followed as the
concentration approaches zero. Maron and Reznik!® have pointed out
that use of these two equations with experimental data often does not give a
common intrinsic viscosity intercept and that the sum of &’ and k" is often
not /.. By including higher terms in [7]in both eqs. (1) and (5), they have
developed a method of plotting dilute solution viscosity data which yields

unambiguous values of [] and maintains the equality k' + k” = /..
Their treatment, however, does not readily lend itself to use in a one-point
[7] method.

In light of these considerations, it is apparent that equations derived by
algebraic manipulations of equivalent limiting expressions are essentially
“bootstrap operations” and that, if one expression really desecribes the vis-
cosity-concentration behavior, the other cannot, unless higher terms of the
two expansions are included. Thus, if Solomon and Ciuta’s equation
yields the correct value of [4], it is due to a balancing of the approximations
involved in discarding terms involving [] to higher powers than the see-
ond. Gillespie and Hulme!? have carried out an analysis of the Solomon
and Ciuta equation and find that it should give results in agreement with
the Huggins equation when %’ in the latter is /5.

Tables V to VIII based upon Martin’s equation and the experimental
value of the slope constant (k = 0.139) provide a means of testing whether
or not Solomon and Ciuta’s equation gives the correct value of [p]. It is
found that the [#] values calculated from #,.; in the tables, using their equa-
tion, are in good agreement with those in the tables up to [ylc = 1. Above
this point, the deviation rapidly becomes serious. This confirms the analy-
sis of Gillespie and Hulme, inasmuch as in the limit, as the concentration
approaches zero, Huggins’s slope constant &’ is equal to 2.303k, Martin’s
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Fig. 4. Relationship between k{y]c and kx,p

slope constant.’* This yields a limiting value of &’ of 0.32 in agreement
with their analysis.

Spurlin has pointed out to us that the Martin equation may be put into
the form

log (knsp) = log (kinlc) + klnle. (6

The right-hand side of this equation is of the form log X + X where X is
k[nle. This permits universal graphs to be constructed of k{yjc versus
knsp. Now if k is established experimentally and %, determined at a known
councentration, [7] may be determined from the graphs by simple arithmetic
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operations. A set of graphs based upon eq. (6) and covering the three
decades of k[n]c encountered in practical [] determinations is given in
Figures 4 and 5. It should be emphasized that such graphs are applicable
to any polymer—solvent system which is described by the Martin equation
and for which the value of k is known. It is hoped that these graphs may
lead to the more general use of the Martin equation.

These graphs can be read to approximately 19,. It must be remembered,
however, that routine viscosity measurements are seldom this accurate.
In the exceptional case where more precision is really needed, it is easily
obtained by linear interpolation, i.e., back calculating »,, from the Martin
equation for two close values of [5].

KINle K KIRle K KINle K
sp sp P
.S00 01,00 1.0._10.0
250 _|--450 90 9.0
.36
400 .80 8.0
.225
.9
.350 .70 7.0
.32
.200
.300 .60 6.0
175 -28
.250 .50 -8 fs.0
.150 L2
.200 .40 4.0
.1
25
.20
150 .30 3.0
100 .16 6
100 .20 2.0
.075 2 5
-050 % oso .08 % .10 4F1.0
.3
.025 LN f

Fig. 5. Relationship between k{njc and knsp.
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CONCLUSIONS

An analysis of an extensive series of experimental dilute solution vis-
cosity data covering a wide range of polyethylene and polypropylene sam-
ples in Decalin at 135°C has shown that the data are fitted better by the
Martin than by the Huggins equation. It was found that a grand average
slope constant (k¢ = 0.139) in the Martin equation was applicable to both
of these polymers. Based on this, a series of tables have been prepared
which permit the caleulation of the intrinsic viscosity from a single relative
viscosity measurement, at an appropriate fixed concentration. Use of this
one-point method with the experimentally established average slope con-
stant should, in general, give more accurate values for [5] than the con-
ventional multipoint method.

It was found that the equation of Solomon and Ciuta also ylelds accept—
able [n] values for these particular polymer-solvent systems. This is a
consequence of the experimental value of the Martin slope constant which
leads to a miting Huggins k£’ of 0.32, which happens to be close to the value
of k¥’ = 0.33 inherent in the Solomon and Ciuta equation.

The Martin equation has been put into a ‘“‘universal form” which permits
its use for obtaining [7] from a single specific viscosity measurement for
any value of the Martin slope constant and concentration. It is hoped
that this relationship and the graphs based upon it may encourage the
wider use of the Martin equation, which we have found to be the most gen-
erally applicable relationship for intrinsic viscosity determinations for a
very wide variety of polymer—solvent systems. We shall be happy to send
a full-sized set of these graphs to interested readers.

The authors are indebted to Dr. H. M. Spurlin for many helpful discussions and sug-
gestions and to Mr. C. E. Green for the computer program for constructing the graphs
shown in Figures 4 and 5.
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