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synopsis 
A statistical analysis of dilute solution viscosity data for a wide range of polyethylene 

and polypropylene samples in Decalin a t  135OC has shown that the Martin equation 

log (?*P/C) = 1% [?I + k h l c  

fits the experimental data better than the Huggins equation 

%P/C = [?I + k"?I2C 

at higher values of [?]c. A grand average k of 0.139 is applicable to both polymers. 
Based upon this, tables have been calculated permitting the ready determination of [q]  
from a single relative viscosity measurement at a known concentration. The Martin 
equation has been put into a universal form, permitting [v]  to be calculated from a mes- 
s u r d  qap if k and c are known. Graphs relating vap to  [ 7 ~ ]  are included for use of the Mar- 
tin equation over wide ranges of both k and c. It was found that the Solomon and Ciuta 
equation 

M C  = ( 2 7 1 ~ ~  - 2 1n r l r e ~ ) ' / P  

fits the experimental polyethylene and polypropylene data, and the reasons for this are 
discussed. 

INTRODUCTION 

The intrinsic viscosity, [q], is probably the most frequently measured 
property of high polymers. It is relatively easy to determine, provides an 
estimate of molecular weight, and is an essential parameter in any detailed 
polymer Characterization.' It is generally determined by measuring the 
relative viscosities, qrcl, of a series of solutions of differing concentration. 
From t,hese data q s p / c  is calculated, where qsp  is the specific viscosity and c 
is the polymer concentration (in g/dl). The qs,/c values are then ex- 
trapolated to zero concentration, using an appropriate relationship, to ob- 
tain [T I .  

It is apparent that considerable time and effort would be saved if, instead 
of determining qrcl for a series of solutions, a single determination at a known 
concentration might be used to give [q] directly. Some years ago, Martin2 
proposed a method for the determination of the intrinsic viscosity of cellu- 
lose in cuprammonium or 0.5M cupriethylenediamine based upon a single 
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viscosity measurement. Recently a number of workers have proposed and 
discussed various equations for obtaining [ q ]  from a single determination of 

These include Solomon and C i ~ t a , ~  Palit and Karl4 and Deb and Chat- 
terjee.5 The current interest in one-point [?] methods has prompted us to 
describe t,he one-point method for polyethylene and polypropylene which 
has been in use in our laboratories for the past five years, together with the 
experimental data and statistical analyses upon which it is based. 

EXPERIMENTAL 

Measurements were made on a wide variety of commercial and experi- 
mental samples of polyethylene and polypropylene. The ratio nw/mn 
was determined by gel permeation chromatography. ASTM Method 
1238-621' was used to measure iz at  190°C. The samples are described in 
Tables I and 11. 

Decalin (decahydronaphthalene) was du Pont technical grade. In  cer- 
tain cases, the Decalin was percolated through silica gel and then distilled.6 
Substantially the same results were obtained using the Decalin as received 
and after purification. Two grams of phenyl-pnaphthylamine per kilo- 
gram of Decalin was added as an antioxidant. 

Dilution Ubbelohde viscometers7 having flow times of approximately 100 
sec for water at 25°C were used. These were calibrated with water and 
standard oils from the National Bureau of Standards according to ASTM 
Method D445-53T. The kinetic energy correction was applied in all cases. 
Measurements were made in a constant temperature oil bath at 135 f 
0.1"C. 

Decalin was found to have a density of 0.883 g/ml at 25°C and 0.801 g/ml 
at 135°C. Thus, for practical routine use (error 0.50/,), 0.90 mlof Decalin 
a t  25°C is equivalent to 1.00 ml at 135°C. Solutions of the polymers were 
prepared on a weight basis, and the weight of the solution introduced into 
the viscometer was determined. The volume of the solution at  135°C and 
its concentration in g/dl at this temperature were calculated using the 
densities given above. Dilutions were made by pipetting Decalin into the 
viscometer and again correcting the added volume to the operating tem- 
perature. At least four dilutions were made in each [q] determination. 

TREATMENT OF DATA 

Viseoaty-Concentration Relationships 

In  order to obtain the [q] of a polymer from a series of viscosity measure- 
ments, it is necessary to assume some functional relationship between rela- 
tive viscosity and concentration. Numerous relationships have been pro- 
posed, and these have been thoroughly reviewed by Rutgem.* Of these 
many relationships, the Huggins equation 
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and the Martin equation 

1% ( 7 1 S P l C )  = log hl + k17llc (2) 

have proved to be among the most useful. The experimental data were 
treated in terms of each of these equations. 

Effect of Shear Rate 

It has been found that solutions of polyethylene and polypropylene in 
Decalin exhibit non-Newtonian behavior, even at  the low concentrations 
normally used in the determination of [q]. A study of the effect of shear rate 
on qsp  was carried out in this laboratorylg using a variable shear Wagner- 
Russell capillary viscometer.lO The effect of shear rate for both polymers 
could be described by the following empirical equation : 

r ) , p r = O  = q s p  (1 + 1.5x10-4ss,i.) (3) 

where qsp+=o  is the specific viscosity at  zero shear rate and q,, is the specific 
viscosity at the shear rate, y .  

Almost all theories of the effect of shear rate on dilute solution visoosity 
predict a second-power dependence on y for the initial non-Newtonian por- 
tion of this qsp+ curve.'l Cases have been reported, however, where a 
linear shear rate dependence describes the experimental data. 11,12 Inas- 
much as our experimental data follow eq. (3), it is clear that any shear rate 
correction disappears as qsp  (or the cohcentration) approaches zero. Thus, 
the extrapolation to zero concentration, which is necessary in using either 
the Martin or Huggins equations, results in the elimination of any necessity 
for a shear rate correction. 

Statistical Treatment of Data 

To obtain an objective estimate of [ q ]  and the slope constants k' and k, 
the experimental data were fitted to the Huggins and Martin equations by 
the method of least squares. Before this was done, it was necessary to 
decide whether or not to weight the experimental points and, if so, in what 
way. As the concentration in a given set of measurements becomes lower, 
the precision in qsp  becomes less, inasmuch as the viscosity of the solution 
approaches that of the solvent and qsp becomes the relatively small differ- 
ence between two large numbers. Based upon this consideration, each 
point was weighted by a factor equal to the difference between the flow 
times of the solution and solvent, both corrected for kinetic energy. 

Least-square values of [q] and the slope const,ants for both the Martin 
and Huggins equations are given in Tables I and 11. 

Estimates of the coefficients of variation (e.g., 100 & [ q ] /  [q]) are included 
for these quantities, &[q] being the estimate of the standard deviation in 
h1. 

Consideration of these coefficients of variation for the more extensive 
polyethylene [ q ]  results indicate that Martin's equation fits the experi- 
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mental data better than Huggins's. The situation appears to be reversed 
in the polypropylene case. However, these polymer samples were fewer 
in number and predominantly in the lower [q] range. Here, both equations 
fit the experimental points quite well, and it is difficult to make a choice. 
Hence, the Martin equation, which shows a better fit at higher [ q ]  values, 
was selected as the basis of the one-point [q] method. 

This choice is confirmed in a more subjective manner when plots of the 
experimental data for a very high [q] polymer, sample B, are:made using 
both relationships. Admittedly, the [ q ]  of this sample is unusually high, 
but it illustrates the better fit of the Martin equation. This is shown in 
Figure 1. It should be noted that the observed slope constant k is 0.143, in 

50 

2" ., 
F? 

30 

20 
0.02 0.04 0.06 0.W 0.10 

c b /di 1 

Fig. 1. Martin plot for polyethylene, sample B: [v] by least squares, 26.9; [ q ]  from high- 
est point using k = 0.139, 27.3. 

close agreement with 0.139, the grand average of both polymers. In  con- 
trast, there is marked curvature in the deviation of the experimental points 
from the least-squares Huggins line, shown in Figure 2. In addition, the 
slope constant k' for this line is approximately twice as high as any other in 
either series of polymers studied. 

Consideration of Tables I and I1 makes it quite clear that treatment of 
the data by the Huggins equation tends to yield lower values than those ob- 
tained using the Martin equation. This, in itself, is not a matter of great 
consequence. The important point is that, by both objective statistical 
analysis and the more subjective plotting of points, the Martin equation 
appears to describe experimental data better over a wider range of [q] and c. 

Interestingly, Sakai13 has analyzed extrapolation procedures for [q] and 
has proposed using averages from Martin and Huggins plots for measure- 
ments in good solvents. This procedure, however, does not lend itself to a 
one-point [q] method. 
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Fig. 2. Huggins plot for polyethylene, sample B: [q] from least-squares line, 21.3. 

At first glance, the spread of k values between samples and even between 
duplicate determinations on the same sample seems to be so large that the 
use of eq. (2) as the basis for a one-point [v J method appears unpromising. 
It has long been known, however, that to achieve very good precision and 
accuracy in the experimental determination of the slope constant requires 
extraordinarily precise measurement techniques. Extensive studies14 have 
shown, however, that for a given polymer-solvent system at a fixed tem- 
perature, k is a constant. Any appreciable variation in k indicates that the 
polymer is not the “given polymer” and that some chemical or structural 
difference is present. These differences may be rather subtle; in the case of 
cellulose derivatives, for example, variations in the degree and uniformity of 
substitution or the presence of traces of bound ions may be responsible. 
In  cases such as this, where the effect of association at  finite concentrat,ion 
can be reduced by extrapolation to zero concentration, we have found it 
preferable to use a solvent that minimizes association and allows t,he use of 
the one-point method. 

Some years ago, however, Davis’5 carried out a very thorough analysis 
of capillary viscometry and of the determination of [ q ]  by a one-point 
method, based on the theory of the propagation of errors. Based upon 
reasonable assumptions, he concluded, that, if k is known to only *40’%, [v] 
can be determined to +2yo if the concentration at  which the viscosity is 
measured is such that [v ]c  50.1. This is too low, in general, for a standard- 
ized method of wide applicability, but it does indicate that reasonable preci- 
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TABLE I11 
Polyethylendne-Point Intrinsic Viscosity- 

[?] from exptl. point nearest 
c = 0.100 

[ q ]  fromexptl. point nearest 
c = 0.500 

. [ q ]  from 
least k =  k =  k =  k =  k =  k =  

Sample squares 0.146 0.132 0.139 0.146 0.132 0.139 

A 19.8 
B 26.9 
C 2.19 

2.34 
2.16 

D 4.06 
4.48 
4.59 

E 1.93 
1.96 

F 2.33 
G 2.35 
H 2.27 

2.32 
2.36 

I 1.94 
1.98 
2.15 

J 1.56 
K 2.06 

1.90 
1.87 

L 2.04 
2.00 
2.01 

M 0.68 
0.66 
0.75 

19.0 
26.7 
2.23 
2.33 
2.20 
4.21 
4.37 
4.43 
1.94 
1.95 
2.34 
2.34 
2.30 
2.32 
2.36 
1.92 
1.99 
2.15 
1.56 
2.26 
1.87 
1.87 
2.06 
1.99 
2.00 
0.70 
0.66 
0.75 

19.8 
28.0 
2.24 
2.34 
2.22 
4.27 
4.43 
4.49 
1.95 
1.96 
2.35 
2.37 
2.32 
2.33 
2.38 
1.94 
2.01 
2.17 
1.57 
2.28 
1.89 
1.89 
2.07 
2.01 
2.02 
0.70 
0.67 
0.76 

- 19.4 
27.3 - 
2.23 - 
2.34 2.30 
2.21 2.24 
4.24 
4.40 4.28 
4.46 4.40 
1.94 1.94 
1.96 1.93 
2.35 - 
2.36 2.35 
2.31 2.31 
2.32 2.29 
2.37 2.28 
1.93 1.99 
2.00 1.96 
2.16 2.07 
1.57 1.59 
2.27 1.95 
1.88 1.90 
1.88 1.86 
2.07 2.14 
2.00 1.98 
2.01 2.02 
0.70 0.66 
0.66 0.65 
0.76 0.74 

- 

- 
- 
- 

2.37 
2.30 

4.47 
4.60 
1.99 
1.98 

2.42 
2.38 
2.35 
2.35 
2.04 
2.00 
2.12 
1.63 
2.00 
1.94 
1.89 
2.19 
2.02 
2.06 
0.66 
0.66 
0.75 

- 

- 

- 
- 
- 

2.34 
2.27 

4.38 
4.50 
1.96 
1.96 

2.38 
2.35 
2.32 
2.32 
2.01 
1.98 
2.09 
1.61 
1.97 
1.92 
1.88 
2.16 
2.00 
2.04 
0.66 
0.66 
0.75 

- 

- 

8 Units, dl/g. 

sion in [ q ]  can be achieved with a one-point method, even if there is con- 
siderable uncertainty in the value of k.  

Examination of the data in Tables I and I1 does not reveal any correla- 
tion between k and the known chemical composition, molecular weight, or 
molecular weight distribution of the sample. In a series of [ q ]  measure- 
ments for a number of samples of the same type of polymer, using the usual 
multipoint method, an apparently wide spread of the slope constant k will 
usually be found. This variation in k will then introduce some, albeit 
relatively small, error in the extrapolated [ q ]  values. We believe that the 
use of an average k value, established by using a wide range of samples, 
together with an experimental g,.l value determined at a concentration 
where good precision can be expected, will yield a more accurate estimate of 
[g ] than that obtained from a multipoint measurement. 



ONEPOINT INTRINSIC VISCOSITY METHOD 2955 

TABLE IV 
Polypropylene-One-Point Intrinsic Viscosity 

Sample 

[vl from 
least 

squares 

[v] from exptl. point nearest 
c = 0.100 

k =  k =  k =  
0.146 0.132 0.139 

N 
0 
P 
Q 

R 

S 
T 

12.1 
1.43 
8.54 
3.08 
3.08 
3.29 
2.32 
2.35 
2.49 
1.70 
2.24 
2.34 

12.1 12.5 12.3 
1.44 1.45 1.45 
8.42 8.60 8.51 
3.08 3.11 3.09 
2.98 3.01 3.00 
3.18 3.22 3.20 
2.27 2.29 2.28 
2.25 2.28 2.26 
2.39 2.42 2.41 
1.69 1.70 1.69 
2.27 2.29 2.28 
2.28 2.30 2.29 

111 from exptl. point nearest 
c = 0.500 

k =  k =  k =  
0.146 0.132 0.139 

1.41 1.44 1.42 
- - - 
- - - 

2.95 3.06 3.00 
3.09 3.20 3.14 
2.21 2.27 2.24 
2.23 2.28 2.25 
2.36 2.41 2.39 
1.68 1.72 1.70 
2.28 2.35 2.31 
2.21 2.28 2.25 

a Units, dl/g. 

The average k for polyethylene is 0.146, while that for polypropylene is 
0.132. This difference is considerably smaller than that between and 
within samples of the same polymer; hence a grand average value of 0.139 
was selected for use. 

Tables I11 and IV  compare the [v] of the various samples calculated from 
qrsz at the indicated concentrations, using k values of 0.132,0.139, and 0.146, 
with that obtained by the least-squares treatment of at  least five experi- 
mental points discussed earlier. Differences between [TI for the various 
values of k are smaller than variations observed in replicate determinations 
by the five-point method. This confirms our earlier conclusions that, for a 
given polymer-solvent system, [v] determined from one measurement of 
relative viscosity using an average k value obtained from many measure- 
ments is, in general, more accurate than [?] determined using the conven- 
tional four- or five-point procedure. 

Figures 1 and 3 illustrate how well the one-point method fits the experi- 
mental data. I n  Figure 1, the [q] obtained by using the highest point and 
the value of 0.139 for k is 27.3, compared with 26.9 from the least-squares 
line. Figure 3 illustrates the fact that even when the fit to the points is 
seemingly bad and k is unusually far from the average, the value of the one- 
point [?] is in acceptable agreement with the five-point method. The 
least-squares line gave [q] = 2.33 with k = 0.172 for sample F, while the 
one-point method using k = 0.139 gives 2.43. 

OUTLINE OF THE [71] METHOD 

The sample of polyethylene or polypropylene is accurately weighed into a 
Based upon this weight, the volume of solution at  135°C volumetric flask. 
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to give the desired polymer concentration (generally 0.1 g/dl) is calculated. 
0.90 times this volume of Decalin at  25°C is added to the volumetric flask 
and the sample dissolved by heating, in the usual manner. The flow times 
of the solvent and of the solution in a suitable viscometer are determined, 
appropriate kinetic energy corrections being applied. The ratio of these 
corrected flow times is the relative viscosity, inasmuch as the density of the 
solution, at  these low concentrations, may be considered to be the same as 
that of the solvent. The value of [ q ]  is then read using linear interpolation 
from the appropriate table (Tables V to VIII) for the concentration used. 

These tables are based on Martin’s equation, with k = 0.139, which may 
be put in the form 

(3) 0.320 [?I c 
7r.E = 1 + ~[rlle 

While the most generally useful concentration is 0.1 g/dl, tables are in- 
cluded for 0.5 g/dl and 0.05 g/dl. These concentrations should be used for 
samples having very low and very high [ a ]  values, respectively. 

DISCUSSION 

The conclusion that the Martin equation, eq. (2), fits the experimental 
data better than the Huggins equation, eq. (l), particularly with the higher 
[ q ]  samples, is in agreement with our experience. Over many years, we 
have found that the Mart,in equation has very satisfactorily fitted dilute 
solution viscosity data for a wide range of polymer-solvent systems. It 
is somewhat surprising that it is not more generally used. This is probably 
due in part to the fact that the Huggins equation is somewhat easier to 
manipulate mathematically. 
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It is in order to examine various equations for [ q ] ,  especially that of 
Solomon and C i ~ t a , ~  by which [ q ]  may be determined from a single viscosity 
measurement without the necessity of establishing the value of a slope con- 
stant. 

Solomon and Ciuta’s equation 

may be derived readily by combining Huggins’s equation 

and Kraemer’s equation16 

remembering that in the limit as c goes to zero, k’ + k” = l / Z .  

An equivalent derivation of eq. (4) consists of expanding In q,.[ and com- 
bining this with the Huggins equation, dropping terms in the expansion 
containing higher powers of [v] than [qI2.l7 

Inasmuch as eq. (4) is a consequence of combining the Huggins and 
Kraemer equations, it is instructive to consider the implications. Both 
cquations are limiting expressions which are only strictly followed as the 
concentration approaches zero. Maron and Reznik18 have pointed out 
that use of these two equations with experimental data often does not give a 
common intrinsic viscosity intercept and that the sum of k‘ and k” is often 
not 1/2. By including higher terms in [g] in both eqs. (1) and (5) ,  they have 
developed a method of plotting dilute solution viscosity data which yields 
unambiguous values of [ q ]  and maintains the equality k’ + k” = 1/2. 

Their treatment, however, does not readily lend itself to use in a one-point 
[ q ]  method. 

I n  light of these considerations, it is apparent that equations derived by 
algebraic manipulations of equivalent limiting expressions are essentially 
‘ibootstrap operations” and that, if one expression really describes the vis- 
cosity-concentration behavior, the other cannot, unless higher terms of the 
two expansions are included. Thus, if Solomon and Ciuta’s equation 
yields the correct value of [TI,  it is due to a balancing of the approximations 
involved in discarding terms involving [ q ]  to higher powers than the sec- 
ond. Gillespie and Hulmelg have carried out an analysis of the Solomon 
and Ciuta equation and find that it should give results in agreement with 
the Huggins equation when k‘ in the latter is l/3. 

Tables V to VIII based upon R’Iartin’s equation and the experimental 
value of the slope constant (k = 0.139) provide a means of testing whether 
or not Solomon and Ciuta’s equation gives the correct value of [ q ] .  It is 
found that the [ T ]  values calculated from qre2 in the tables, using their equa- 
tion, are in good agreement with those in the tables up to [qlc = l .  Above 
this point, the deviation rapidly becomes serious. This confirms the analy- 
sis of Gillespie and Hulme, inasmuch as in the limit, as the concentration 
approaches zero, Huggins’s slope constant k’ is equal to 2.303k1 Martin’s 
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Fig. 4. Relationship between k[q]c  and kq., 

slope ~0nstant . l~ This yields a limiting value of k' of 0.32 in agreement 
with their analysis. 

Spurlin has pointed out to us that the Martin equation may be put into 
the form 

(6) log (kvs*) = log (khlc) + khlc .  

The right-hand side of this equation is of the form log X + X where X is 
k [ ~ ] c .  This permits universal graphs to be constructed of k[q ]c  versus 
kTsp. Now if k is established experimentally and rlSp determined at a known 
concentration, [v ] may be determined from the graphs by simple arithmetic 
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operations. A set of graphs baaed upon eq. (6) and covering the three 
decades of k[q ]c  encountered in practical [ q ]  determinations is given in 
Figures 4 and 5. It should be emphasized that such graphs are applicable 
to any polymer-solvent system which is described by the Martin equation 
and for which the value of k is known. It is hoped that these graphs may 
lead to the more general use of the Martin equation. 

These graphs can be read to approximately 1%. It must be remembered, 
however, that routine viscosity measurements are seldom this accurate. 
In  the exceptional case where more precision is really needed, it is easily 
obtained by linear interpolation, i.e., back calculating qsp from the Martin 
equation for two close values of [ q ] .  

Fig. 5. Relationship between k [ q ] c  and kq8,,. 
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CONCLUSIONS 

An analysis of an extensive series of experimental dilute solution vis- 
cosity data covering a wide range of polyethylene and polypropylene sam- 
ples in Decalin at  135°C has shown that the data are fitted better by the 
Martin than by the Huggins equation. It was found that a grand average 
slope constant (k = 0.139) in the Martin equation was applicable to both 
of these polymers. Based on this, a series of tables have been prepared 
which permit the calculation of the intrinsic viscosity from a single relative 
viscosity measurement, at  an appropriate fixed concentration. Use of this 
one-point method with the experimentally established average slope con- 
stant should, in general, give more accurate values for [ q ]  than the con- 
ventional multipoint method. 

It was found that the equation of Solomon and Ciuta also yields accept- 
able [ q ]  values for these particular polymer-solvent systems. This is a 
consequence of the experimental value of the Martin slope constant which 
leads to a limiting Huggins k’ of 0.32, which happens to be close to the value 
of k’ = 0.33 inherent in the Solomon and Ciuta equation. 

The Martin equation has been put into a “universal form” which permits 
its use for obtaining [ q ]  from a single specific viscosity measurement for 
any value of the Martin slope constant and concentration. It is hoped 
that this relationship and the graphs based upon it may encourage the 
wider use of the Martin equation, which we have found to be the most gen- 
erally applicable relationship for intrinsic viscosity determinations for a 
very wide variety of polymer-solvent systems. We shall be happy to send 
a full-sized set of these graphs to interested readers. 

The authors are indebted to Dr. H. M. Spurlin for many helpful discussions and sug- 
gestions and to Mr. C. E. Green for the computer program for constructing the graphs 
shown in Figures 4 and 5. 
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